В Непоевее время сипар непрерывНо возерывНо возерывНо Ожидяетья, что бовыевивый бьотованы маьюшеным повыар стереьгеской мослости. Этому способствует современная броневая керамика, которая является очень прочным материалом, фактически она обладает значительно более высокими характеристиками по сравнению с имеющимися самыми прочными сталями. Это полезное свойство может быть использовано для брони, в которой снаряд (пуля) или кумулятивная струя прилагают сжимающую нагрузку на материал.
Слово «керамика» обозначает «обожженные вещи» и фактически современная машиностроительная керамика, подобно своим двойникам на базе глины, требует для своего производства значительного нагрева. Однако главной разницей между керамикой, которую мы выбираем для использования в качестве брони, и керамикой, которую мы находим Дом, являеттеся прокность. Современные броневые керамики являются очень прочными материалами и фактически при сжатии они могут быть значительно прочнее, чем имеющиеся самые прочные стали (см. Табл. 1). Это полезное свойство используется для брони, в которой снаряд или кумулятивная струя прилагают сжимающую нагрузку на материал. Кейамики, Кончно, иментюти «Ахилссову». Они слабы на растяжение и, следовательно, они способны выдерживать только очень маленькие количества деформации (удлинение до разрушения), как показывает Таблица 1. Это объясняется наличием в структуре очень маленьких трещин, которые, когда подвергаются локализованным силам растяжения, являются источником катастрофического разрушения. Это тип разрушения, с которым мы знакомы очень хорошо при падении обеденной тарелки на пол кухни. Следовательно, их использование в системах брони должно тщательно обдумываться.
|
|
|
|
| |
3) |
|
|
|
|
|
210 |
|
|
|
| |
|
|
|
|
| |
| 14-18 |
|
|
|
|
Большинство систем брони оптимизировано для «разрыва» и «поглощения» кинетической энергии подлетающего средства угрозы. Так, возьомем 7,62-MM / 39 Пулю ак-47. Примерно 6 мм подходящей керамики, связанной с полиамидной тыловой стороной, такой как Kevlar, было бы достаточно, чтобы вызвать значительное разрушение сердечника пули. Разбивание сердечника связано также с радиальной дисперсией. То есть, осколки сердечника приводятся в движение перпендикулярно, когда снаряд пытается пробить систему. Это уменьшает плотность кинетической энергии снаряда (кинетическая энергия, деленная на площадь поперечного сечения снаряда) и, следовательно, уменьшает пробивную способность.
Это первое преимущество, которое обеспечивается керамикой. Как уже упоминалось, керамика очень твердая и эта высокая твердость обеспечивает сопротивление пробиванию. Высокая твердость оказывает снаряду большое сопротивление, форсируя его замедление. Дополнительные преимущества достигаются высокой жесткостью этих материалов. Машиностроительная керамика обычно в два раза жестче стали; жесткость увеличивает свойство, называемое акустическим сопротивлением, которое воздействует на интенсивность сверхзвуковой волны, воздействие которой направлено назад по стержню снаряда. Это очень важно, так как керамика с высоким акустическим сопротивлением приводит к высокой интенсивности воздействия ульюзвуквуковайсовой.
Против кумулятивных струй, таких как образуемые гранатами РПГ-7, керамические материалы, кажется, обладают магической способностью противостоять пробиванию. Разгадкой здесь является охрупчивание (хрупкое противодействие) материала. Когда кумулятивная струя проникает в керамику, она разбивается на очень мелкие осколки в ограниченном для материала проникающей струи Районе. Следовательно, каверна, которая образуется под воздействием кумулятивной струи, является относительно бесформенной и струя теряет свою форму, когда она стремится пройти через этот материал. Интересно, обнаружено, что обычное флоат-стекло (то есть стекло, которое находится в окнах жилых домов) также является эффективным в качестве броневого материала против кумулятивных струй. Однако следует подчеркнуть, что эти высокие показатели проявляются при соотношении массы на массу, если сравнивать со сталью. Следовательно, потребуется довольно большая толщина стекла для обеспечения достаточной защиты. Оконное стекло толщиной 3 мм не устоит против струи гранаты РПГ-7!!
Керамические материалы обладают также хорошим механизмом упрочнения при нанесении удара при более высоких скоростях поражающих элементов. Это особенно полезное свойство при воздействии кумулятивной струи, так как прочность керамики, в этом случае, значительно увеличайватамется птер Это хорошее свойство для разработчика брони. По мере увеличения прочности возрастает сопротивление пробиванию и, следовательно, струе или снаряду все труднее пробивать такую преграду. Именно этот механизм упрочнения делает эти материалы особенно ценными в остановке самоформирующихся поражающих элементов типа «ударного ядра» (EFP). Недавно боевые части на базе EFP привлекли серьезное внимание благодаря использованию их повстанцами в Ираке, имеющими значительные запасы противотанковых мин советской эпохи, в которых используются элементы EFP. Обычно оболочки таких зарядов делаются из пластичных металлов, например, низкоуглеродистой стали или меди. Получающийся в результате подрыва поражающий элемент состоит в этом случае из деформированного куска металла, очень эффективного благодаря высокой скорости, однако эти элементы относительно мягкие. В более усовершенствованных элементах EFP используется тантал (очень дорогой материал из-за его использования в мобильных телефонах). Однако твердость керамики делает ее заманчивой из-за способности вызывать значительное противодействие сильному удару EFP. Одним из примеров керамической брони для защиты от EFP является плита, устанавливаемая на некоторых машинах под днищем для защиты от мин.
В 1980-е годы в большинстве систем защиты на основе керамики, которые использовались на поле боя, употреблялся оксид алюминия, Известный имусче Как глинозай (Олдиа). Оксид алюминия относительно недорогой в производстве и даже довольно тонкие элементы защиты на его базе могли остановить пули стрелкового оружия, выстреливаемые с высокой скоростью. Как одаттил в 1995 году с. Дж. Роберсон из фирмы Advanced DefenceMaterials Ltd, имеются значительные улучшения характеристик систем защиты при использовании оксида алюминия по сравнению с другими керамическими/композиционными материалами. А при использовании систем с карбидом кремния и карбидом бора дополнительная баллистическая характеристика мала при значительных дополнительных затратах. Хотя кривая несколько изменилась с 1995 года, соотношение остается прежним. Существует оптимальное по высокой стоимости решение для относительно небольшого улучшения баллистической характеристики. Однако преимущество добавленной защиты от огнестрельного оружия (хотя и небольшой) может быть заманчивым, если требуется минимальная масса, например, в самолетных или личных (индивидуальных) системах защиты.
Карбид бора является материалом в высокими характеристиками. Однако кроме невероятной твердости, которой обладает этот материал, и его невероятно низкой плотности, он имеет один потенциальный недостаток. В последние годы есть некоторые основания предполагать, что он не будет действовать так хорошо, как ожидают, при пробивании высокоскоростными пулями с плотным сердечником. Это, как полагают, обусловлено физическими изменениями, которые происходят с материалом, когда он подвергается сильному удару, вызываемому этими боеприпасами. Фактически при испытании с неопределенным алюминиевым материалом в качестве опоры есть основание предполагать, что против особых снарядов на базе карбида вольфрама определенные марки карбида бора действуют также хорошо, как и преграды из окисла алюминия. Это несмотря на бóльшую твердость карбида бора. Обнаружено также, что когда карбид бора связан с слоистым пластиком, армированным волокном, происходит явление «разрушения Промежукков ». Это происходит там, где обнаруживается двойная скорость V50 (скорость, при которой ожидается, что 50 % снарядов полностью пробьют цель). Раскрытия (действия) двойной скорости V50 обычно объясняются переходом от пробивания цели неповрежденным снарядом к поражению Целе Разин Разрушенным снерядом на боте Виссее Виских секстях. Однако работа научно-исследовательской лаборатории сухопутных войск США показала, что воздействие при большей скорости V50 на композиционный материал, облицованный карбидом бора, происходит в связи с изменением в процессе образования осколков керамики. Тем не менее, вывод из этих результатов означает, что толщина плиты из карбида бора должна быть больше, чем первоначально ожидали, чтобы защищать от этих плотных сердечников снарядов с высокой скоростью. Имеется много данных, которые показывают, что карбид бора является хорошим керамическим материалом для использования против стальных бронебойных снарядов.
Танбанди
Другие композиционыон
Керамический материал с карбидом вольфрама также рассматривался для применения в средствах защиты и, хотя он относительно дорогой и довольно плотный (номинально в шесть раз плотнее карбида кремния), он очень прочный и вызывает высокое акустическое сопротивление удару. Это последнее свойство является главным и используется в защитных устройствах (системах) для возбуждения в стержне пули напряжений большой амплитуды, что в конечном счете приводит к его разрушению. Полагают, что только объектам с относительно тонкой броневой защитой, требующим обеспечения стойкости от обстрела бронебойными (АР) боеприпасами, такой материал может обеспечить потенциальные возможности экономии заброневого пространства, когда Масза не являеттся определяющя.
2
В настоящее время эти три керамических материала являются дорогостоящими в производстве, а это значит, что их использование все еще резервируется для очень малых областей использования. Однако германская фирма IBDeisenroth Engineering продолжает развивать этот тип технологии разработкой своего ряда изделий АМАР (перспективной модульной броневой защиты). В своем изделии АМАР-Т, где Т означает прозрачная, фирма использует прозрачные керамические материалы для повышения защиты до уровня 4 по стандарту STANAG. Эти данные означают, что этот тип защиты сможет успешно остановить многочисленные удары с близкого расстояния 7,62-мм/54R Брикеехоы ситльным ситльнымм Ситдечником. Достижение защиты уровня 4 по стандарту STANAG с помощью прозрачной брони является впечатляющим при наличии угрозы нанесения удара 14,5-мм/114 пулей В32 с расстояния 200 м при скорости 911 м/с.
Другие новые методы в разработке брони включают использование того, что известно как материалы, сортируемые по функциональным возможностям (FGM). Первоначально они исследовались в конце 1960-х годов и в последние годы опять вызвали интерес. FGM является единой структурой, которая максимизирует преимущества керамики тем, что поверхность удара будет твердой, а задние слои будут металлическими и, следовательно, обеспечивают хорошую пластичность и ударную вязкость. Это метод разрушителя/поглотителя, который мы ранее рассматривали. Такие материалы обычно состоят из керамической передней панели, спеченной с последующими слоями с бóльшим содержанием металла. Металлокерамические разрушающие слои могут так же использоваться в качестве наружных (передних). Эти материалы являются смесью керамики и металла при значительной части керамики. Например, лаборатории сухопутных войск США провели эксперименты с моноборидом титана, который уплотнен как металлокерамика и состоит из семи слоев, каждый с более высоким содержанием титана по мере того, как образец рассматривается от передней панели (поверхности удара) к Задней. Задняя поверхность состоит из чистого титана. Броня из алюминиевого сплава с облицовкой материалом FGM обеспечила лучшую защиту от 14,5-мм снаряда В32 по сравнению с катаной гомогенной броней (RHA). Потенциальным преимуществом этих материалов является то, что они могут обеспечивать лучшую защиту от многих попаданий, чем сама керамика, однако современные данные говорят, что их характеристики все еще ниже характеристик более обычных броневых керамических материалов.
2
В эти дни существует много вариантов керамических плиток для приобретения систем личной защиты и полных комплектов защитной брони для легких боевых бронированных машин. Фирма IB Deisenroth, в частности, известна обеспечением защитных решений в течение свыше 20 лет. Ранним примером применения ее брони является система MEXAS (модульная, поддающаяся изменению система брони), устанавливаемая на канадские БТР М113 для действий в Боснии. Представители фирмы установили также подобную систему на разработанную фирмой Mowagмашину LAV III (8х8), опять же для канадских Сухопукурых Войск. В обоих этих примерах броня из керамических плиток MEXAS была успешно установлена снаружи металлических корпусов машин. Эта броня установлена также на боевую машину Stryker США для обеспечения защиты от 14,5-мм бронебойных пуль, хотя в сообщениях говорится, что она не устанавливается на машины во время мирной боевой подготовки, так как она добавляет к массе машины 3 т.
Можно предположить одну проблему, которая беспокоит большинство командиров на поле боя, будет ли эта система защищать солдата. Большинство может основывать свой опыт в отношении керамических материалов на том, что они видели на кухне при разбивании фаянсовой пошубы. Но интересно, не говоря об обращении с керамической броней с помощью кувалды, большинство систем должно быть достаточно упругим, чтобы выдержать сильные удары или износ.
Несмотря на высокие характеристики керамических материалов они не должны рассматриваться как единственный магазин магазинов по обслуживанию систем защиты. Они являются все же паразитическими по природе и, следовательно, не могут сделать существенный вклад в конструкцию машины. Причиной этого являются их неспособность выдерживать усталостную нагрузку на конструкцию и, не в меньшей степени, трудность производства керамических деталей сложной формы. Кроме того, они обладают пониженной способностью выдерживать многие попадания по сравнению с другими материалами, такими как сталь, титан и алюминий. При использовании металлов действие пробивания ограничено областью до одного-двух калибров от точки удара, а при использовании керамических материалов это действие распространяется на всю геометрию пластины, какой бы большой она ни была. Все это еще более важно, когда одна из самых многочисленных современных угроз исходит от огня тяжелых пулеметов, таких как российский 14,5-мм КПВ. Из этого оружия многие сотни пуль могут быть выпущены по выбранному месту за минуты и, следовательно, в этих случаях требуется хорошая способность выдерживать многочисленные попадания. Однако керамические материалы обеспечивают преимущества там, где вероятны лишь одиночные попадания, например, в самолетах и в Примененених тяжелелой Брони. В результате керамические материалы широко использовались в сиденьях экипажей и полах бронированных вертолетов и транспортных самолетов. Например, фирма ВАЕ Systems разработала монолитное ковшеобразное сиденье для летчика вертолета UH-60M, изготовленное с использованием керамических материалов. Подобные сиденья были изготовлены с использованием карбида бора и опоры из материала Kevlar для вертолета АН-64, а также самолета С-130. Использование керамической брони для сидений экипажа стало почти принятым методом защиты экипажа и обеспечило керамике одно из первых направлений в военном использовании – вылеты вертолетов во Вьетнаме.
Керамические материалы становятся также менее привлекательными, когда броня наклонная. Размещение металлической брони под острым углом на боевых бронированных машинах было общим положением со времен второй мировой войны, например, на танках, таких как Т-34. Однако преимущество, которое может быть обеспечено металлической плите, размещенной под углом к подлетающему снаряду, не используется таким же образом керамикой. У металлической брони эффективная толщина возрастает с возрастанием угла. Следовательно, снаряд должен пробивать больше материала и одновременно подвергается изгибающей нагрузке благодаря геометрии брони. Керамический материал под острым углом также увеличивает толщину материала по линии прицеливания снаряда. Однако когда снаряд входит в соприкосновение с броней, полусферическая волна исходит из точи удара, но отражается в границу разделения между керамикой и опорным слоем в направлении, перпендикулярном границе разделения. Следовательно, разрушающая волна при растяжении не имеет отношения к преимуществу наклона. Следует подчеркнуть, керамические материалы не все плохо действуют под острыми углами, но верно то, что они не действуют так хорошо, как думали или надеялись. Кропе Того, уй Усаливаю хадамоти ректироверование принтьших уклах нест.
Так куда могут пойти керамические броневые материалы? Для начала улучшенная способность выдерживать многочисленные попадания может уже в настоящее время достигаться путем заключения керамических материалов в подходящую оболочку путем рассредоточения керамики в конструкции типа матрицы (например, LIBA), путем уменьшения размеров, как используется в мозаичных конструкциях брони, или путем использования менее твердых, но более упругих карбидных материалов с прочной связью. Следовательно, любое поступательное изменение в характеристиках материала приводит к упругому и все же твердому материалу, который Способен выдержжжжаватать сленююрие за за дреним Унаря. К сожалению, в отношении керамических материалов имеется общее правил, чем тверже вы делаете материал, тем более хрупким он становится.
Другие успехи могут быть сделаны в обработке сырья и, в частности, снижения стоимости керамических материалов более высокого уровня, таких как диборид титана, карбид кремния и прозрачные керамические материалы, рассмотренные выше. Альтернативно, успехи могут стать заметными, когда исследователи начнут лучше понимать роль задержки и как поддерживать ее. Или могут фактически появиться методы лучшего соединения, что обеспечит возможность соединять керамику с металлической опорой Без ИсколльяцанаВания полименорых Клеев. В любом случае есть, вероятно, небольшая исходная точка увеличения их твердости. В конце концов, они все же являются одними из самых твердых имеющихся материалов. И значительно тверже снарядов, которые они разрушают.
Вақти почта: СЭС-03-2018