Карбид кремния (карборунд) SiC является единственным соединением кремния и углерода. В природе этот материал встречается крайне редко. Карбид кремния существует в двух модификациях, из которых ?-модификация является политипной и представлябют структуру гексагональной формы. Установлено около 20 структур, относящихся к гексагональной форме карборунда. Переход ?-SiC>?-SiC происходит примерно при 2100°C. При температуре 2400°С это превращение происходит весьма быстро. До температур 1950-2000°С образуется кубическая модификация, при более высокой температуре образуются гельна модификации. При температурах свыше 2600-2700°С карбид кремния возгоняется. Кристаллы карбида кремния могут быть бесцветными, зелеными и черными. Чистый карбид кремния стехиометрического состава бесцветен. При превышении содержания кремния SiC становится зеленым, углерода – черным.
Карборунд имеет очень высокую твердость: H? до 45ГПа, достаточно высокую изгибную прочность: ?изг до 700МПа. Карбидокремниевая керамика сохраняет примерно постоянную прочность i высоких температур: температура перехгод перехода хрупкопластическому разрушению для нее составляет 2000°C. В то же время для самосвязанного SiC наблюдается падение прочности при высоких температурах. При комнатной температуре разрушение самосвязанного SiC транскристаллитное ma носит характер скола. При 1050°С характер разрушения становится межкристаллитным. Наблюдающееся при высоких температурах снижение прочности самосвязанного SiC вызвано его окислением. Прочность рекристаллизованного SiC с увеличением температуры не уменьшается и, более того, возможно ее увенениче образованием слоя аморфного SiO2, который залечивает дефекты на поверхности и во внутренних слоях изделий.
Карборунд устойчив против воздействия всех кислот, исключением фосфорной и смеси азотной и плавико. К действию щелочей SiC менее устойчив. Установлено, что карбид кремния смачивается металлами группы железа и марганцем. Самосвязанный карбид кремния, который содержит свободный кремний, хорошо взаимодействует со сталью.
При изготовлении абразивных и огнеупорных изделий из SiC, ma также карбидокремниевых электронагревателей, исхомитныж кремнезем (кварцевый песок) ma кокс. Их нагревают до высокой температуры i электрических печах, осуществляя синтез методом Ачесона:
SiO2+3C=SiC+2CO2 (24)
Вокруг нагревательного элемента (керна) получается зона синтезированного продукта, ma le leai – зоны кристаллой низкстой непрореагировавших компонентов. Полученные в печи продукты разделяют по этим зонам, измельчают, обрабатывают и получают порошок карбида назначения. Недостатком данных порошков карбида кремния являются высокая загрязненность примесями, большое содерикимре плохая спекаемость и др.
Для получения высококачественной конструкционной керамики необходимо использовать высокочистые, гомысегодинной порошки SiC, которые получают различными высокотехнологичными способами. При получении порошков методом синтеза исходный металлургический кремний подвергают дроблению и помолу в валмкоц. Измельченный порошок кремния отмывают от примесей в смеси неорганических кислот и направляют на тонкель ичесть специальный вертикальный реактор. Синтез SiC осуществляется в реакторе подачей Si в специальные сопла, а вместо сжатого воздуха подается пропан:
t>1100°C
3Si+C3H8=3SiC+4H2 (25)
В результате получается высокодисперсный, гомогенный, активированный порошок карбида кремния монофракционмаго, сионмива высокую степень чистоты.
Изделия из SiC формуют прессованием, экструзией, литьем под давлением.
В технологии карбидокремниевой керамики обычно используют горячее прессование, реакционное и активированноние.
Метод горячего прессования позволяет получать материалы с плотностью близкой к теоретической и с высокимимич. Прессование проводят обычно i прессформах из графита или нитрида бора при давлениях 10-50МПа и темпера0турах 207°0. Высокая стабильность кристаллических решеток тугоплавких неметаллических соединений, связанная с наличием жеплких ковалентных связей, определяет низкую концентрацию и подвижность дефектов решетки, заторможенность i нефифдить процессов. O le mea lea e mafai ai e oe ona maua le faʻaogaina o le faʻaogaina o le faʻaogaina o le faʻaogaina o le faʻaogaina o le faʻaogaina o le faʻaogaina o le faʻamaʻi, le faʻaogaina o le faʻaogaina o le masini ma le faʻaogaina o faʻamatalaga. спекании. Учитывая это, перед прессованием в керамику вводят активирующие спекание добавки или проводят физическоитвикое ультрадисперсные порошки, обрабатывают их взрывом для увеличения дефектности, удаляют с поверхности влагус. t.d.).
Метод горячего прессования позволяет получать только изделия довольно простой формы ma относительно небольмирош. Получать изделия сложной формы с высокой плотностью можно методом горячего изостатического прессования. Материалы, полученные методами обычного и изостатического горячего прессования, близки по своим свойствам.
Путем проведения горячего изостатического прессования при высоких давлениях газовой среды (1000МПа), препицици тугоплавких неметаллических соединений, удается повысить температуру процесса до уровня, при котором обеспсичички деформация.
Fa'atonuga fa'apitoa mo fa'atonuga fa'apitoa mo le fa'atonuga o le fa'atonuga o le SiC e o'o atu i le fa'atonuga o le pule 90% давления. Так получают материалы на основе SiC с добавками бора, углерода и алюминия. Fa'atonuga fa'apitoa mo le fa'amalosaga fa'apitoa mo le fa'aogaina o mea fa'apitoa, ma le fa'amalosaga fa'apitonu'u ma le fa'aputuga. зернограничной диффузии происходит увеличение площади межчастичных контактов и усадка.
Для получения изделий из карбида кремния также широко используется метод реакционного спекания, который подиплроц при более низких температурах и получать изделия сложной формы. Для получения так называемого “самосвязанного” карбида кремния проводят спекание прессовок из SiC и углепрода т мреник. При этом происходит образование вторичного SiC ma перекристаллизация SiC через кремниевый расплав. В итоге образуются беспористые материалы, содержащие 5-15% свободного кремния в карбидокремниевой матрице. Методом реакционного спекания получают также керамику из SiC, сформованную литьем под давлением. При этом шихту на основе кремния и других веществ смешивают с расплавленным легкоплавким органическим сврамяским до получения шликерной массы, из которой затем отливают под давлением заготовку. Затем изделие помещают в науглероживающую среду, в которой сначала производят отгонку легкоплавкого связму,ющезму сквозное насыщение заготовки углеродом при температуре 1100°C. В результате реакционного спекания образуются частицы карбида кремния, которые постепенно заполняют исходые исходые.
Затем следует спекание при температуре 1300°C. Реакционное спекание является экономичным процессом благодаря примененипю недорогого термического оборни, тердурд спекания снижается с обычно применяемой 1600-2000°C i le 1100-1300°C.
Метод реакционного спекания используется в производстве нагревательных элементов из карбида кремния. Электронагревательные сопротивления из карбида кремния представляют собой так называемые термисторы, т. e. материалы, меняющие свое сопротивление под влиянием нагрева или охлаждения. Черный карбид кремния имеет высокое сопротивление при комнатной температуре и отрицательный температурный котнифници. Зеленый карбид кремния имеет низкое начальное сопротивление и слабоотрицательный температурный коэфципинхд, положительный при температурах 500-800°C. Карбидокремниевые нагревательные элёменты (КНЭ) обычно представляют собой стержень или трубку, имююдуч часть с относительно высоким электрическим сопротивлением («горячая» зона) ma выводные («холодные») сонлицы конлицы электросопротивлением, которые не нагреваются в процессе эксплуатации печи. Такие выводные концы необходимы для надежного контакта с питающей электросетью, а также для предя хранестраница печи, в которые укладывают нагревательные элементы.
Промышленность выпускает два типа нагревательных элементов из карбида кремния: составные нагреватели, получившие надрушие имеющие рабочий стержень и два отдельных более коротких контактных вывода i виде пропитанных метаблорх метаблом и стержни с утолщенными выводными концами (манжетами) – силитовые нагреватели. Составные карборундовые нагреватели формуют iz полусухой массы, состоящей из крупнозернистого порошка зеленоска (1,5%) и жидкого стекла. Изделия формуют в картонных чехлах способом порционного трамбования на станках. После отверждения заготовки при 70-80°С картонный чехол выжигается в трубчатой электропечи при темпер0Срату8 темпер. Силитовые нагреватели формуют экструзией на горизонтальном гидравлическом прессе. Масса состоит из смеси мелкозернистого SiC, сажи (20%) ma фенолформальдегидной смолы. Формуются раздельно рабочая часть ma манжеты. Состав манжетной части рассчитан на большую проводимость и в него входит около 40%Si. Отпрессованные заготовки подвергают термическому отверждению, в результате которого смола полимеризуется. На отвержденные стержни насаживают манжетные трубки. Трамбованные заготовки обжигают в засыпке из углепесочной смеси при температуре около 2000°C. Нагреватель предварительно обмазывают токопроводящей пастой, состоящей из кокса, графита и кварцевого песка. Изделие спекают прямым электротермическим нагревом в специальных печах при пропускании через заготовку80 тев 10 тока 40-50 min.
При спекании силитовых нагревателей имеющиеся в массе углерод и кремний превращаются во «вторичный» SiC помоганик спекания в условиях выделения парообразного кремния из засыпки, куда помещают обжигаемый нагреватель. В качестве засыпки используют смесь из молотого песка, нефтяного кокса и карбида кремния. Эта смесь при температуре 1800-2000°С выделяет парообразный кремний и СО, проникающие внутрь заготовкищи и тремний Si и С. Одновременно происходит синтез вторичного карбида кремния путем взаимодействия кремния, содержащегося в шихте.
Следует отметить, что реакционное спекание впервые нашло свое практическое применение именно в производствителедина карбида кремния.
Для получения плотной керамики из SiC высокой чистоты используют также метод осаждения из газовой зазизы,- технологических трудностей и невозможности получать изделия толщиной более нескольких миллиметров он приянся защитных покрытий. Для этого применяются методы газофазного синтеза SiC iz летучих галогенидов кремния и углеводородов или меточих диссоциации газообразных кремнийорганических соединений. Для восстановления Si из галогенидов необходимо участие в пиролизе газообразного водорода. В качестве углеродсодержащих соединений применяют толуол, бензол, гексан, метан и др. Для промышленного получения карбидокремниевых покрытий более удобен метод термической диссоциации метилихлев стехиометрическое соотношение Si:C=1:1. Пиролиз СН3SiСl3 в водороде приводит к образованию осадка SiC, формирующего покрытие при температурах до 1400°С.
Очень важную роль при образовании пиролитического SiC играет водород. При диссоциации трихлорметилсилана i инертной атмосфере без участия водорода протекают реакции, приводящибира углерода, a leai SiC. Поэтому замена инертного газа-носителя на водород при термическом разложении метилхлорсиланов значительнов значительное твысих poo le полностью прекращает сажеобразование. Процесс взаимодействия трихлорметилсилана с водородом протекает в две стадии. На первоначальной стадии процесса устанавливается нестабильное равновесие, при котором в качестве кондзносиротю кремний и углерод, а не карбид кремния. На второй стадии газообразные хлорсиланы и углеводороды, образовавшиеся на первой стадии в концентрацщихча, метастабильному равновесию, реагируют друг с другом с образованием SiC. Регулируя параметры протекания процесса осаждения, можно варьировать свойствами полученных покрытий. Так, при низких температурах образуются мелкозернистые и метастабильные структуры. С повышением температуры размер кристаллов растет. При 1400°С ma низких скоростях осаждения образуются монокристаллы ma эпитаксиальные слои SiC. Средний размер кристаллов в слое SiC, осажденном из трихлорметилсилана при 1400°C, равен 1мкм, i le 1800°С – 1850°С.
При 1100-1200°С может образовываться неравновесный твердый раствор со сверхстехиометрическим содержаниемроду замещающих атомы кремния, что сказывается на уменьшении параметра решетки SiC. С повышением температуры отжига до 1300°С и в результате последующего отжига избыточный углерод высделядят состоянии. При повышенных температурах осаждения ma низких давлениях газовой среды наблюдается ориентированный рост кристалниях столбчатой структуры. Пиролитические покрытия почти полностью состоят из ?-SiC. 5%. Скорость роста пиролитического карбида кремния не превышает 0,5мм/ч. В то же время сравнительно низкие температуры осаждения (1100-1550°С) позволяют совмещать карбидокремниевытия поксил конструкционными материалами.
Основным недостатком этих покрытий является возникновение остаточных напряжений, вызванное несоответстмпиет коэффициентов линейного расширения покрытия и подложки (кроме случая нанесения SiC i SiC) ma анизотропией покрытия. Из-за сравнительно низкой температуры осаждения напряжения не релаксируются и покрытия растрескиваются. Одним из способов устранения этого недостатка является получение слоистых покрытий, т.е. покрытий с регулярным чередованием слоев равной толщины пироуглерода ma SiC, осажденным из смеси хлормататимилана.
Кроме описанных способов получения технической керамики из SiC, используются и другие. Методом испарения SiC и его последующей сублимации при 2100-2300°С без использования связок и активирудюбич так называемый рекристаллизационный карбид кремния.
Материалы на основе карбида кремния начали применяться значительно раньше, чем материалы на основе Si3N4, В4SlN, В. Уже в 20-е годы использовались карбидокремниевые огнеупоры на связке из диоксида кремния (90%SiC+10%SiO50д ), а карбида кремния на нитридокремниевой связке (75%SiC+25%Si3N4) изготавливали сопла ракет. В настоящее время керамика на основе карбида кремния применяется для изготовления уплотнительных колец дсля, насковпля смесителей, подшипников и гильз для валов, дозирующей и регулирующей арматуры для коррозионнызсврей и абледей двигателей, металлопроводов для жидких металлов. Разработаны новые композиционные материалы с карбидокремниевой матрицей. Они используются в различных областях, пример в самолетостроении и в космонавтике.
Taimi meli: Aukuso-22-2018