В Настоящее время Существует непрерывно в Болебность и меньши барих барих Бронировааннх системах. Ожидается, чтоевые Бронированные киины легча стратегической мобильности. Этому способствует современная броневая керамика, которая является очень прочным материалом, фактически она обладает значительно более высокими характеристиками по сравнению с имеющимися самыми прочными сталями. Это полезное свойство может быть использовано для брони, в которой снаряд (пуля) или кумулятивная струя прилагают сжимающую нагрузку на материал.
Западные вооруженные силы увеличивают свое присутствие за границей, где основная угроза представлена значительным распространением тяжелых пулеметов (НMG) или выстреливаемых с упором в плечо противотанковых средств типа РПГ. Эту проблему часто усугубляют политические и (или) оперативные требования, выполнение которых требует главным образом использования Легких борых Бронированнх отличаются довольно низким уровнем броневой защиты от огнестрельного оружия (обычно от 7,62-мм оружия). В связи с таким положением возникает требование к производству брони, обеспечивающей лучшую защиту личного состава при одновременном сведении до минимума ее полной массы.
Таблица 1 - некорые свойсства бронех ки ки по Катанениюю оононной брононой (RHA)
|
|
|
|
| |
3) | 7850 |
|
|
|
|
210 |
|
|
|
| |
|
|
|
|
| |
| 14-18 |
|
|
|
|
Керамики в броневом применении работают в значительной степени как элементы устройства разрыва в конструкции многослойной брони. . Ослаблениениее его. Другими словами, кинетическая энергия снаряда рассеивается броневым материалом разбивая снаряд на осколки и перенацеливая энергию получающихся в результате осколков в сторону от защищаемой конструкции. Другие элементы в многослойной конструкции будут действовать как «поглотители», то есть они поглощают кинетическую энергию снаряда за счет пластической деформации или расслаивания, таким образом превращая ее в более низкую форму энергии, такую как теплота.
Большинство системтем Брони оптимировано барической задри под барито средстова уредстова Так, возьмем 7,62-мм/39 пулю АК-47. Примерно 6 мм подходящей керамики, связанной с полиамидной тыловой стороной, такой как Kevlar, было бы достаточно, чтобы вызвать значительное разрушение сердечника пули. Разбивание сердечника связано также с радиальной дисперсией. То есть, осколки сердечника приводятся в движение перпендикулярно, когда снаряд пытается пробить систему. Это уменьшает плотность кинетической энергии снаряда (кинетическая энергия, деленная на площадь поперечного сечения снаряда) и, следовательно, уменьшает пробивную способность.
Начало первого исседования в Области Тованной, Облоной, Обет уоно к после первой мировой войны, когда в 1918 году майор Невилл Монроу Хопкинз экспериментально наблюдал, что 0,0625 дюйма твердой эмали, нанесенной на подвергающуюся удару сторону стальной цели, увеличивало ее защитные возможности. Несмотря на это раннее открытие, применение керамических материалов является относительно недавним способом повышения защитных свойств в таких странах, как Великобритания. Однако этот способ нашел широкое использование в Советском Союзе и военнослужащими США во время вьетнамской войны. Здесь использование керамических материалов вызвано попыткой уменьшить потери летчиков вертолетов. Например, в 1965 году вертолет UH-1 HUEY был оснащен комплектом композитной брони с твердым покрытием (HFC), используемым в бронированных сиденьях пилота и второго пилота. Сиденья обеспечивали защиту от 7,62-мм бронебойных (АР) боеприпасов снизу, с боков и сзади благодаря использованию облицовки из карбида бора и основания из стекловолокна. Карбид бора является одной из самых легких керамик, которые могут использоваться в броне (и по хорошей причине). Он имеет примерно 30 % от массы стали того же объема и в то же время величину твердости, которая обычно в шесть раз больше твердости катаной гомогенной броневой стали (см. Табл. 1).
конуса нагрузки в керамике под пробивающей пулей. Зеленый цвет поок поровреждеждеждеждежнажнннный материал, Маснылаласный повреждение Керамикеники.
Это первое преимущество, которое обеспечивается керамикой. Как уже упоминалось, керамика очень твердая и эта высокая твердость обеспечивает сопротивление пробиванию. Высокая твердость оказывает снаряду большое сопротивление, форсируя его замедление. Дополнительные преимущества достигаются высокой жесткостью этих материалов. Машиностроительная керамика обычно в два раза жестче стали; жесткость увеличивает свойство, называемое акустическим сопротивлением, которое воздействует на интенсивность сверхзвуковой волны, воздействие которой направлено назад по стержню снаряда. Это очень важно, ультразвуковой волны на снаряд, вызывая его повреждение при растяжении.
Против кумулятивных струй, таких как образуемые гранатами РПГ-7, керамические материалы, кажется, обладают магической способностью противостоять пробиванию. Разгадкой здесь является охрупчивание (хрупкое противодействие) материала. Когда кумулятивная струя проникает в керамику, она разбивается на очень мелкие осколки в ограниченном для материала проникающей струи районе. Следователо, Каверна, которая образуется под восивой относитель и струяйой и струя теряет свою форму, когда она стремится пройти через этот материал. Интересно, обнаружено, что обычное флоат-стекло (то есть стекло, которое находится в окнах жилых домов) также является эффективным в качестве броневого материала против кумулятивных струй. Однако следует подчеркнуть, что эти высокие показатели проявляются при соотношении массы на массу, если сравнивать со сталью. Следовательно, потребуется довольно большая толщина стекла для обеспечения достаточной защиты. Оконное стекло толщиной 3 мм не устоит против струи гранаты РПГ-7!!
Однако интересная концепция была предложена на 13-ом европейском симпозиуме по боевым бронированным машинам (AFV), проводимом университетом Cranfield University в военной академии Великобритании (30 апреля-2 мая 2008 года). Во время втого сим озума профес данреданой обрывной обкожность создания создания создания прозрачной взрывной реактивной брони (ERA), то есть, брони ERA, в которой в качестве материала противодействующей плиты используется стекло. Если Бы ильзовалась прозрачначчная вмрывная вм уоизводитить прозрачную систему ERA. Одакнако, кан под до кить очени оч бар и дататочно гасткори оналалала на экипажа, Когда детонирует взрывчатое вещество взрывной защиты. Толщина неподвижной задн плиты поротина 150- 200 ман порннению передводействующействующействующей Плующей Плую.
Керамические материалы обладают также хорошим механизмом упрочнения при нанесении удара при более высоких скоростях поражающих элементов. Это особенно полезное свойство при воздействии кумулятивной струи, так как прочность керамики, в этом случае, значительно увеличивается при этих очень высоких темпах нагрузки. Это хорошее свойство для разработчика брони. По мере увеличения прочности возрастает сопротивление пробиванию и, следовательно, струе или снаряду все труднее пробивать такую преграду. Именно этот механизм упрочнения делает эти материалы особенно ценными в остановке самоформирующихся поражающих элементов типа «ударного ядра» (EFP). Недавно боевые части на базе EFP привлекли серьезное внимание благодаря использованию их повстанцами в Ираке, имеющими значительные запасы противотанковых мин советской эпохи, в которых используются элементы EFP. Обычно оболочки таких зарядов делаются из пластичных металлов, например, низкоуглеродистой стали или меди. Получающийся в результате подрыва поражающий элемент состоит в этом случае из деформированного куска металла, очень эФ В более усовершенствованных элементах EFP используется тантал (очень дорогой материал из-за его использования в мобильных телефонах). Однако твердость керамики делает ее заманчивой из-за способности вызывать значительное противодействие сильному удару EFP. Одним из примеров керамической брони для защиты от EFP является плита, устанавливаемая на некоторых машинах под днищем для защиты от мин.
Оксид алюминия широко используется в системах индивидуальной защиты личного состава, а также в системах защиты машин. В Великобритании первая система защиты для личного состава массового производства, в которой использовались керамические плиты, была введена в Северной Ирландии. Базовая мягкая система защиты, известная как боевая личная броня (СВА), является составной и состоит из основного элемента из найлонового и полиамидного волокна, к которому могут добавляться 1-кг плиты из композиционного материала с полиамидным Волокомомом, Облцованной дамикой обечнох (см. рис. 10). Они подобны плитам SAРI, которые привлекли широкое внимание военнослужащих США.
Несмотря на экономическую эффективность и способность оксида алюминия остановить большинство пуль стрелкового оружия при относительно хорошей эффективности по массе, свой путь на рынок керамической брони нашли другие керамические материалы. Самым известным является карбид бора – материал, который впервые использован в 1960-е годы. Он неверогно Твердый, Которых желатело компенсировать нескококо грамма урариях Другой пример использования карбида бора был в производстве системы усиленной личной защиты (ЕВА). Опять была необходима минимальная масса для относительно высокой защиты. Она была введена британскими сухопутными войсками для обеспечения защиты от 12,7-мм пуль со стальным сердечником и содержала в себе комплект «тупой травмы». Тупая травма происходт, Керобита нещивается опоры, ведущую к ушибам, серьезным травмам основных органов и даже смерти.
Карбид бора является материалом в высокими характеристиками. Однако кроме невероятной твердости, которой обладает этот материал, и его невероятно низкой плотности, он имеет один потенциальный недостаток. В последние годы есть некоторые основания предполагать, что он не будет действовать так хорошо, как ожидают, при пробивании высокоскоростными пулями с плотным сердечником. Это, как полагают, обусловлено физическими изменениями, которые происходят с материалом, когда он подвергается сильному удару, вызываемому этими боеприпасами. Фактически при испытании с неопределенным алюминиевым материалом в качестве опоры есть основание предполагать, что против особых снарядов на базе карбида вольфрама определенные марки карбида бора действуют также хорошо, как и преграды из окисла алюминия. Это несмотря на бóльшую твердость карбида бора. Обнаружено также, что когда карбид бора связан с слоистым пластиком, армированным волокном, происходит явление «разрушения промежутков». Этоисходит кам, Где обнажужается یчто кить, ч цель). Раскрытия (Д дствия поражению цели разрушенным снарядом на более высоких скоростях. Однако работа научно-исследовательской лаборатории сухопутных войск США показала, что воздействие при большей скорости V50 на Композицини керамики. Тем не не менее, вывод бар этих резльтатов батата бар ожидали, чтобы защищать от этих плотных сердечников снарядов с высокой скоростью. . против стальных бронебойных снарядов.
Воздейстействия 7.62-мм Сердечникика пули арм2 на корбид бора кора. Показаны:
Карбид Кремния
В последние годы друге Керамическичи заа пер тали огнестрельного оружия, но ни один из них не оказался более эффективным, чем подверженные горячему прессованию образцы карбида кремния, которые производятся фирмами США, такими как BAE Systems и CeradyneInc. Фирма Ceradyne, в частности, имеет длинную родословную в производстве керамических плиток для применения с целью защиты, будучи вовлеченной в этот процесс с 1960-х годов. Этот материал производится под объединенными нагревом и давлением, чтобы изготовить невероятно прочное изделие, которое, как доказано, обеспечивает высокое сопротивление пробиванию боеприпасами стрелкового оружия, а также снарядами APFSDS. Во время изготовления обычно достигаются температуры примерно 2000°С.
Карбид кремния, в частности, показал невероятное сопротивление пробиванию, вызванному явлением, известным как задержка во времени. Говоря просто, «задержка во времени» это, когда снаряд, кажется, буквально сидит (отсюда «задержка») на поверхности керамики некоторое время после удара. Это явление, которое можно видеть при использовании технологий высокоскоростной фотографии и вспышке рентгеновского луча, вызывается главным образом тем, что керамика представляется более прочной, чем снаряд, и, следовательно, снаряд начинает течь радиально по поверхности керамики. Хотя это явление наблюдалось в начале 1990-х лабораториями сухопутных войск США, ученые все еще пытаются разъяснить механизм, которым оно поддерживается в керамике. Озвестно, что «длителоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоелоеляеляе. Одним способом, которым этого можно достичь, является использование типа горячего прессования для капсулирования керамики с помощью металлических накладок. Следствием этого процесса является вызывание высоких сжимающих напряжений в керамическом материале посредством теплового рассогласования металлических и керамических слоев при охлаждении. Эта предварительная нагрузка в конечном счете обеспечивает керамике преимущество. Второе преимущество обеспечивается окантовкой керамического материала металлическими накладками и увеличением возможности выдерживать многочисленные попадания. Это ограниче де действует для для даня даня барискомов в Едичательнононононуюную способность брони при дополнительных выстрелах.
2
Оксинитридридамя или Alon Можесть полик поликистами технологических маршрутов, которые используются для получения обычной непрозрачной машиностроительной керамики. Обычно ALON будет производиться из предварительно синтезированного порошка, которому затем может придаваться форма и который потом может спекаться в азотной атмосфере.
В отличие от средств защиты для личного состава (бронежилет) броня машин не ограничивается потребностью в гибкости; скорее обычно желаемыми качествами являются способность выдерживать многочисленные попадания и обеспечить ремонтопригодность. Ранниее способы использования Керамиаск зи в передну барь отливок башен Советских основных боных оання для обечачения бароного دабебого Снарда. Это занятие интеграцией продолжалось с некоторыми танками Т-72 и Т-80. Однако большинство керамических систем изготавливалось как дополнительный комплект, то есть, система элементов брони, которые могли крепиться к корпусу машины. Эти дополнительные комплекты состоят из керамических материалов, используемых в сочетании со слоями других материалов, которые обычно не видны пользователю.
Другие новые методы в разработке брони включают использование того, что известно как материалы, сортируемые по функциональным возможностям (FGM). Первоначально они исследовались в конце 1960-х годов и в последние годы опять вызвали интерес. FGM является единой структурой, которая максимизирует преимущества керамики тем, что поверхность удара будет твердой, а задние слои будут металлическими и, следовательно, обеспечивают хорошую пластичность и ударную вязкость. Это метод разрушителя/поглотителя, который мы ранее рассматривали. Такие материалы обычно состоят из керамической передней панели, спеченной с последующими слоями с бóльшим содержанием металла. Металлокерамические разрушающие слои могут так же использоваться в качестве наружных (передних). Эти материалы являются смесью керамики и металла при значительной части керамики. Например, лаборатории сухопутных войск США провели эксперименты с моноборидом титана, который уплотнен как металлокерамика и состоит из семи слоев, каждый с более высоким содержанием титана по мере того, как образец рассматривается от передней панели (поверхности удара) к задней. Задняя поверхность состоит из чистого титана. Броня из алюминиевого сплава с облицовкой материалом FGM обеспечила лучшую защиту от 14,5-мм снаряда В32 по сравнению с катаной гомогенной броней (RHA). Потенциальным преимуществом этих материалов является то, что они могут обеспечивать лучшую защиту от многих попаданий, чем Са Кама Карамика, Однакеменные данныеритики вститеристик бокных броневых керамических материалов.
2
Имеется также много поставщиков керамического сырья, хотя мы испытываем в Европе до некоторой степени ограниченные поставки материалов горячего прессования. Керамика горячего прессования имеет тенденцию быть прочнее и обеспечивать лучшую защиту от огнестрельного оружия и, следовательно, эти типы керамики заманчивы для создания брони. Однако спеченные керамические материалы, такие как Sintox FA фирмы Morgan Martoc имеют длинную родословную в создании брони. ФИрмы мон-9, етес, Ваестерms, Ceradyne и Coorstek до плиток брони для машин и самолетов. Однако ключевым моментом разработки комплектов керамический брони является успешная интеграция их в систему, которая защищается, и, более того, гарантия, что они надежны в боевых условиях.
Несмотря на высокие характеристики керамических материалов они не должны рассматриваться как единственный магазин магазинов по обслуживанию систем защиты. Они являются все же паразитическими по природе и, следовательно, не могут сделать существенный вклад в конструкцию машины. Причиной этого являются их неспособность выдерживать усталостную нагрузку на конструкцию и, не в меньшей степени, трудность производства керамических деталей сложной формы. Кроме того, они обладают пониженной способностью выдерживать многие попадания по сравнению с другими материалами, такими как сталь, титан и алюминий. При использовании металлов действие пробивания ограничено областью до одного-двух калибров от точки удара, а при использовании керамических материалов это действие распространяется на всю геометрию пластины, какой бы большой она ни была. Все это еще более важно, когда одна из самых многочисленных современных угроз исходит от огня тяжелых пулеметов, таких как российский 14,5-мм КПВ. Из г этого оружия многие пуль пуль могуть могуному мо г выбутылох случаях требуется хорошая способность выдерживать многочисленные попадания. Однако керамические материалы обеспечивают преимущества там, где вероятны лишь одиночные попадания, например, в самолетах и в применениях тяжелой брони. В результате керамические материалы широко использовались в сиденьях экипажей и полах бронированных вертолетов и транспортных самолетов. На использованием керамических материалов. Подобные сиденья были изготовлены с использованием карбида бора и опоры из материала Kevlar для вертолета АН-64, а также самолета С-130. Использование керамической брони для сидений экипажа стало почти принятым методом защиты экипажа и обеспечило керамике одно из первых направлений в военном использовании – вылеты вертолетов во Вьетнаме.
Igihe cya nyuma: Sep-03-2018