Использование керамики с высокими эксплуатационными характеристиками для увеличения срока службы
ZPC предлагает своим клиентам широкий выбор решений, которые сочетают лучшие материалы, включая керамику с высокими эксплуатационными характеристиками. Для увеличения срока службы эксплуатируемого оборудования заказчики из многих отраслей промышленности стали полагаться на керамику, имеющую высокие эксплуатационные характеристики. Kompilacja ZPC jest rozwiązaniem dla nowych technologii запасных частей, kotorые будут эксплуатироваться в течение более длительного срока, не требуя проведения тех. обслуживания, ремонта или замены.
Керамика с высокими эксплуатационными характеристиками для жестких условий эксплуатации
В минералоперерабатывающей промышленности керамика с высокими эксплуатационными характеристиками используется в механизмах регулирующих клапанов, дроссельных катушках, отражательных блоках емкостей самоиспарения, трубках впрыска кислорода, встроенных дросселях для пульпопроводов и других применених.
При производстве своей продукции ZPC обычно объединяет три вида карбида кремния. Устойчивость к эрозии каждого материала почти на порядок выше величины следующего за ним.
- Спеченный карбид кремния (SSiC)
- Реакционно-связанный карбид кремния (RBSiC)
- Карбид кремния, связанный нитридом (NBSiC)
Лучшие виды керамики для условий, вызывающих эрозию
SSiC используется в промышленности в местах, в которых чаще всего происходит эрозионный износ, takkih как механизмы для клапанов, эксплуатируемых в эрозионных условиях (пробки и седла), в некоторых встроенных дросселях (керамические проходные отверстия), и других критических компонентах для жестких условий эксплуатации. RBSiC используется в трубках, трубах, и отражательных блоках. Такая продукция, выполненная из керамики, подходит для различных видов применения в пищевой промышленности, нефтегазовой промышленности i других условиях эксплуатации, в которых оборудование подвергается сильному воздействию эрозии.
Качественная, сертифицированная и протестированная керамика, обеспечивающая исключительную производительность
Компания ZPC на регулярной основе сотрудничает со своими поставщиками керамики относительно качества materiał, materiał, способов производства, конструкции детали инспекции. Все виды керамики производства ZPC протестированы i имеют сертификат качества. Каждая деталь тщательно проверяется на наличие трещин, отколов, пористости и других дефектов. ZPC делает значительные усилия для того, чтобы продукция, разработанная нами на высоком техническом уровне, удовлетворяла требованиям эксплуатации i была готова к установке на промплощадках заказчиков.
Пожалуйста, звоните по номеру +86-15854459359 по любым вопросам, связанным с предложениями керамики с высокими эксплуатационными характеристиками ZPC.
Или отправьте нам электронное сообщение, и один из наших инженеров рассмотрит ваши вопросы и проблемы и ответит вам в течение 24 часов. caroline@rbsic-sisic.com
Karbid kremowy
Для производства изделий из карбида кремния используется технология реакционного спекания. В процессе производства исходная заготовка, полученная прессованием смеси порошков карбида кремния и gra, пропитывается расплавом кремния, после чего спеченная заготовка подвергается механической обработке. Основное достоинство керамики на основе карбида кремния как материала для подшипников i уплотнений жидкостного трения – это очень высокая износостойкость в жестких условиях абразивного изнашивания и повышенных температур, обеспечиваемая сочетанием высокой твердости i высокой теплопроводности. Некоторые физико-механические свойства материала карбид кремния в сравнении с твердым сплавом и силицированным графитом приведены в следующей таблице.
Характеристика материала | Karbid kremowy | Самосвязанный карбид кремния | ВК6ОМ | Силицированный графит СГ-Т |
Proszę bardzo, g/sm3 | 3,05 | 3,1 | 14,8 | 2,6 |
Staw | 92% karbida kremowa | 99% karbida kremowa | Карбид вольфрама | 50% karbidy kremowej |
Предел прочности на изгиб, МПа | 320…350 | 350 – 450 | 1700…1900 | 90…110 |
Предел прочности на сжатие, МПа | 2300 | 2500 | 3500 | 300…320 |
Модуль упругости, ГПа | 380 | 390-420 | 550 | 95 |
Przetrwanie | 87…92 HRC | 90…95 HRC | 90 godzin pracy | 50…70 HRC |
Трещиностойкость, МПа*м1/2, в пределах | 3,5 –4,5 | 4 – 5 | 8-25 | 2-3 |
Коэффициент теплопроводности при 100°С, Вт/(м°К) | 140 – 200 | 80 – 130 | 75…85 | 100…115 |
KOэфф. теплового расширения при 20-1000°С, К-1*10-6 | 3,5…4,0 | 2,8 – 4 | 4,5 | 4,6 |
Вязкость разрушения, МПа*м1/2 | 3,5 | 5 | 10…15 | 3…4 |
Область применения подшипников из карбида кремния обусловлена, в основном, его высокими износостойкостью i теплопроводностью. Известно, что ресурс работы деталей из карбида кремния в абразивных средах в разы выше, чем у instрументальных сталей и графитов, и в 1,5-2 раза, чем у твердых сплавов. Высокая теплопроводность существенно снижает градиент температуры в элементах подшипника и вместе с низким коэффициентом термического расширения обеспечивает стабильность геометрических характеристик (величину рабочего зазора i форму поверхности трения) в широком диапазоне рабочих температур. Указанное сочетание высокой теплопроводности i низкого коэфициента термического расширения определяет высокую термостойкость карбида кремния. Он способен выдерживать десятки термоударов до 1000-1300°С;. Карбид кремния работает до температуры 1350°С, что позволяет использовать его во всех известных нам процессах нефтепереработки. В качестве примера можно привести использование карбида кремния в нагревателях, длительно работающих na воздухе при температурах около 1400°С. Большое значение имеет химическая стойкость карбида кремния к продуктам нефтехимии. За рубежом в химической индустрии очень широко используются изделия из карбида кремния, в частности, при высоких температурах.
Благодаря своим уникальным физико-химическим и прочностным характеристикам керамика из карбида кремния особенно в последние 5-10 лет широко используется как наиболее удачный материал с точки зрения, inертности, прочности, износостойкости, термостойкости i teплопроводности.
Przykładowe informacje:пары трения в узлах торцевого уплотнения насосных агрегатов используются для перекачки нефтепродуктов, сжиженного газа. Созданы и укомплектованы деталями (крылчатка, вал, пары трения) из карбида кремния химически стойкие насосы для работы в агрессивных средах, а также укомплектованы парами трения в узлах осевых опор в погружных насосах.
Карбид кремния также используется для изготовления сопел и форсунок для подачи газов в зону плавления стекла и METаллов, спекания ceramiki.
· Сопла различных типоразмеров из карбида кремния:
- для пескоструйных установок;
- для высокотемпературных пескоструйных установок (температура песка около 1000 °С), используемых для очистки от нагара труб на предприятиях нефтедобывающей промышленности и нефтепереработки;
- для факелов газовых печей, в том числе стекловарочных печей с длительностью непрерывной работы более 2 LET;
· Конфузоры различных типоразмеров из карбида кремния для газовых стекловаренных печей для варки хрусталя, взамен чугуна. Работают на Никольском заводе «Красный гигант» более пяти лет при температуре 1300 °С, где чугунные работали 2-3 miesiące;
· Плиты различных типоразмеров из карбида кремния для футеровки печей с рабочей температурой до 1400 °С в воздушной среде i до 2000 °С в wakuumę;
· В плавильных печах, где сплавляемый материал не реагирует с кремнием или карбидом кремния, карбид кремния заменяет платину и grafit;
· В индукционных печах по плавлению сплавов для корпусов часов графитовые тигли заменены на карбид кремния и работают третий год вместо двух месяцев при температурах до 1000 °С.
Химическая стойкость самосвязанного карбида кремния
Średa | Koncentracja, % | Termopara, lub S | Wiosna, 24 godziny | Коррозия, mм/год | Сопротивление коррозии |
Słonawa kiszka | 35 | 72 | 4.2 | 0,01 | A |
Уксусная кислота | 50 | 70 | 4.2 | 0,00 | A |
Фосфорная кислота | 50 | 70 | 4.2 | 0,01 | A |
Srebrna kisłota | 95-98 | 70 | 4.2 | 0,00 | A |
Srebrna kisłota | 50 | 70 | 4.2 | 0,01 | A |
Азотная кислота | 60 | 70 | 4.2 | 0,00 | A |
Edykij Natr | PH=14 | 70 | 4.2 | 0,02 | A |
Edykij Natr | 10 | 70 | 4.2 | 0,05 | C |
Edykij Natr | 30 | 70 | 4.2 | 0,1 | C |
HF+HNO3 | 40+10 | 70 | 4.2 | 7.12 | C |
A – <= 0,1; B = 0,1 – 0,8; C – >= 0,8
Химическая стойкость карбида кремния
Średa | Koncentracja, % | Termopara, lub S | Коррозия, mм/год |
Srebrna kisłota | 95-98 | 160±10 | 0,06 |
Edykij Natr | 30 | 100 | 0,06 |
Фосфорная кислота | 85 | 300±10 | 0,28 |
Азотная кислота | 60 | 20±1 | 0,06 |
Гидроокись kaliя | 45 | 100 | 0,12 |
Słonawa kiszka | 20 | 100 | 0,12 |
HF:HNO3 | 40+10 | 60±2 | 6.5 |
Czas publikacji: 09-01-2019