Керамика на основе SiC – Техническая керамика

Карбид кремния (карборунд) SiC является единственным соединением кремния и углерода. В природе этот материал встречается крайне редко. Карбид кремния существует в двух модификациях, из которых? ую структуру гексагональной формы. Установлено около 20 структур, относящихся к гексагональной форме карборунда. Переход ?-SiC>?-SiC происходит примерно при 2100°С. При температуре 2400°С. До температур 1950-2000°С. ции. При температурах свыше 2600-2700°С карбид кремния возгоняется. Кристаллы карбида кремния могут быть бесцветными, зелеными и черными. Чистый карбид кремния стехиометрического состава бесцветен. При превышении содержания кремния SiC становится зеленым, углерода – черным.

Карборунд имеет очень высокую твердость: H? til 45ГПа, достаточно высокую изгибную leverandør: ?изг до 700МПа. Карбидокремниевая керамика сохраняет примерно постоянную прочность до высоких температур: темпаратухр рупкопластическому разрушению for нее составляет 2000°С. В то же время для самосвязанного SiC наблюдается падение прочности при высоких температурах. При комнатной температуре разрушение самосвязанного SiC транскристаллитное и носит характер скола. При 1050°С характер разрушения становится межкристаллитным. Наблюдающееся при высоких температурах снижение прочности самосвязанного SiC вызвано его окислением. Прочность рекристаллизованного SiC с увеличением температуры не уменьшается и, более того, возможениев езможевизо бес ованием слоя аморфного SiO2, который залечивает дефекты на поверхности и во внутренних слоях изделий.
Карборунд устойчив против воздействия всех кислот, за исключением фосфорной og смеси азотной и плавикови. К действию щелочей SiC менее устойчив. Установлено, что карбид кремния смачивается металлами группы железа и марганцем. Самосвязанный карбид кремния, который содержит свободный кремний, хорошо взаимодействует со сталью.

При изготовлении абразивных и огнеупорных изделий из SiC, а также карбидокремниевых электронагрев,ами ми служат кремнезем (кварцевый песок) и кокс. Их нагревают до высокой температуры в электрических печах, осуществляя синтез методом Ачесона:

SiO2+3C=SiC+2CO2 (24)

Вокруг нагревательного элемента (керна) получается зона синтезированного продукта, а за ней – зонызкриче гировавших компонентов. Полученные в печи продукты разделяют по этим зонам, измельчают, обрабатывают и получают порошоби начения. Недостатком данных порошков карбида кремния являются высокая загрязненность примесями, большое содки лохая спекаемость и др.

Для получения высококачественной конструкционной керамики необходимо использовать высокочистиочистые, гомогосной шки SiC, которые получают различными высокотехнологичными способами. При получении порошков методом синтеза исходный металлургический кремний подвергают дробленимию и певе. Измельченный порошок кремния отмывают от примесей в смеси неорганических кислот и направляют на тинкон вертикальный реактор. Синтез SiC осуществляется в реакторе подачей Si в специальные сопла, а вместо сжатого воздуха подапродап:

t>1100°С

3Si+C3H8=3SiC+4H2 (25)

В результате получается высокодисперсный, гомогенный, активированный порошок карбида кремния моцония й высокую степень чистоты.

Изделия из SiC FORMуют прессованием, экструзией, литьем под давлением.

В технологии карбидокремниевой керамики обычно используют горячее прессование, реакционноное и апктинови.

Метод горячего прессования позволяет получать материалы с плотностью близкой к теоретической меки мивис и. Прессование проводят обычно в прессформах из графита eller нитрида бора при давлениях 10-50МПраха ту0маха те000°х те0ма-02. Высокая стабильность кристаллических решеток тугоплавких неметаллических соединений, связанная с наличием жестких направленных ковалентных связей, определяет низкую концентрацию и подвижность дефектов решетки, заторможенность в ней диффузионных процессов. Это затрудняет протекание процесса диффузионно-вязкого течения, ответственного массоперенос и уплопвс ии. Читвая это, перед пресованиsess I сои и т.д.).

Метод горячего прессования позволяет получать только изделия довольно простой формы и относительно небольно небольно. Получать изделия сложной формы с высокой плотностью можно методом горячего изостатического прессовсс. Материалы, полученные методами обычного изостатического горячего прессования, близки по своим свойв.

Птем проведения гор/ten a тичесая деформация.

Исол CanD метод ативироeds min ния. Так получают материалы основе SiC с добавками бора, углерода и алюминия. Благодэтим добавкам за счет образования диффузионного слоя на поверхности частиц, их консолипинац чной диффузии происходит увеличение площади межчастичных Module и усадка.

Для получения изделий из карбида кремния также широко используется метод реакционного спекодиви, процесс при более низких температурах и получать изделия сложной формы. Для получения так называемого "самосвязанного" карбида кремния проводят спекание прессовок из SiC и угвер. При этом происходит образование вторичного SiC og перекристаллизация SiC через кремниевый расплав. For å oppnå gratis materielle verdier, 5-15 % øker forbruket i økonomien. Методом реакционного спекания получают также керамику из SiC, сформованную литьем под давлением. При этом шихту на основе кремния и других веществ смешивают с расплавленным легкоплавлавсим оргищиз м ) до получения шликерной массы, из которой затем отливают под давлением заготовку. Затем изделие помещают в науглероживающую среду, в которой сначала производят отгонку легкогоз м сквозное насыщение заготовки углеродом при температуре 1100°С. В результате реакционного спекания образуются частицы карбида кремния, которые постепенно заполисор.

Temperaturen har en temperatur på 1300°C. Реакционное спекание является экономичным процессом благод применению недорогого термического обор нижается с обычно применяемой 1600-2000°C til 1100-1300°C.

Метод реакционного спекания используется в производстве нагревательных элементов из карбида кремния. Электронагревательные сопротивления из карбида кремния представляют собой так называемые термисторы, т. е. материалы, меняющие свое сопротивление под влиянием нагрева или охлаждения. Черный карбид кремния имеет высокое сопротивление при комнатной температуре и отрицательный температуре ения. Зеленый карбид кремния имеет низкое начальное сопротивление и слабоотрицательный температурный коцип ожительный при температурах 500-800°С. Нарбидокремниевые нагревателные эенты (кнэ) 4 ротивлением, которые не нагреваются в процесе эаатации печи. Такие выводные концы необходимы для надежного контакта с питающей электросетью, а такходимы for питающей электросетью ок печи, в которые укладывают нагревательные элементы.

Проышенносusen ager тержней, и стержни с утощенныи выводныи концами (манжетами) - сититовые нагреватети .и. Составные карборундовые нагреватели формуют из полусухой массы, состоящей из крупнозернистого порошкоса жи (1,5%) и жидкого стекла. Изделия формуют в картонных чехлах способом порционного трамбования на станках. Optimal temperatur på 70-80°C. Силитовые нагреватели FORMуют экструзией на горизонтальном гидравлическом прессе. Масса состоит из смеси мелкозернистого SiC, сажи (20%) og фенолформальдегидной смолы. Формуются раздельно рабочая часть и манжеты. Состав манжетной части рассчитан на большую проводимость и в него входит около 40%Si. Отпрессованные заготовки подвергают термическому отверждению, в результате которого смола полимеризуется. На отвержденные стержни насаживают манжетные трубки. Трамбованные заготовки обжигают в засыпке из углепесочной смеси при температуре около 2000°С. Нагреватель предварительно обмазывают токопроводящей пастой, состоящей из кокса, графита и кварц. Изделие спекают прямым электротермическим нагревом в специальных печах при пропускании через через заготе 0-1 заготов 40-50 min.

При спекании силитовых нагревателей имеющиеся в массе углерод и кремний превращаются во «во «воторични нного спекания в условиях выделения парообразного кремния из засыпки, куда помещают обжигаереватнаг. В качестве засыпки используют смесь из молотого песка, нефтяного кокса og карбида кремния. Эта смесь при температуре 1800-2000°С выделяет парообразный кремний и СО, проникающие внутре загищ дыми Si и С. Одновременно происходит синтез вторичного карбида кремния путем взаимодействия кремния, содержахтег.

Следует отметить, что реакционное спекание впервые нашло свое практическое применение именно на превизвий из карбида кремния.

4 невозожности полать изелия крытий. Для этого применяются методы газофазного синтеза SiC из летучих галогенидов кремния и углеволидис Для этого применяются методы циации газообразных кремнийорганических соединений. Для восстановления Si из галогенидов необходимо участие в пиролизе газообразного водорода. В качестве углеродсодержащих соединений применяют толуол, бензол, гексан, метан и др. Для промышленного получения карбидокремниевых покрытий более удобен метод термической диссоциациов, х стехиометрическое соотношение Si:C=1:1. Пиролиз СН3SiСl3 в водороде приводит к образованию осадка SiC, former покрытие при темперадтура температура1х0°.

Очень важную роль при образовании пиролитического SiC играет водород. При диссоциации трихлорметилсилана в инертной атмосфере без участия водорода протекают реакцив, мния и углерода, а не SiC. Поэтому замена инертного газа-носителя на водород при термическом разложении метилхлорсиланов значительнов значительниш ает или полностью прекращает сажеобразование. Процесс взаимодействия трихлорметилсилана с водородом протекает в две стадии. На первоначальной стадии процесса устанавливается нестабильное равновесие, при котором в качестве конфансиве й и углерод, а не карбид кремния. На второй стадии газообразные хлорсиланы и углеводороды, образовавшиеся на первой стадии в концетрация ному равновесию, реагируют друг с другом с образованием SiC. Регулируя параметры протекания процесса осаждения, можно варьировать свойствами полученных покрытий. Так, при низких температурах образуются мелкозернистые и метастабильные структуры. С повышением температуры размер кристаллов растет. При 1400°С и низких скоростях осаждения образуются монокристаллы и эпитаксиальные слои SiC. Средний разер кристалов вое sic, осаженном из трихорртилилана при 1400 с р р и р и и и и и и и и и и и.

При 1100-1200°С может образовываться неравновесный твердый раствор со сверхстехиометрическим содащаметани щих атомы кремния, что сказывается на уменьшении параметра решетки SiC. Сповышением температуры отжига до 1300°С или в результате последующего отжига избыточный углего остоянии. При повышенных температурах осаждения и низких давлениях газовой среды наблюдается ориентированлниов бчатой ​​структуры. Пиролитические покрытия почти полностью состоят из ?-SiC. Доля гексагональных политипов составляет менее 5%. Скорость роста пиролитического карбида кремния не превышает 0,5mm/ч. В то же время сравнительно низкие температуры осаждения (1100-1550°С) позволяют совмещать каребидения ыми конструкционными материалами.

Основным недостатком этих покрытий является возникновение остаточных напряжений, вызванное несопетвы ициентов линейного расширения покрытия и подложки (кроме случая нанесения SiC на SiC) og анизотропией покрытия. Из-за сравнительно низкой температуры осаждения напряжения не релаксируются и покрытия растрескивают. Одним из способов устранения этого недостатка является получение слоистых покрытий, т.е. покрытий с регулярным чередованием слоев равной толщины пироуглерода og SiC, осажденным из смесинахлсимети.

Кроме описанных способов получения технической керамики из SiC, используются и другие. Методом испарения SiC и его последующей сублимации при 2100-2300°С uten использования связоки при ют так называемый рекристаллизационный карбид кремния.

Материалы на основе карбида кремния начали применяться значительно раньше, чем материалы основе Si3Nи4,ВСlN4,ВN. Уже в 20-е годы использовались карбидокремниевые огнеупоры на связке из диоксида кремния (90%SiC+10%) рбида кремния på нитридокремниевой связке (75%SiC+25%Si3N4) изготавливали сопла ракет. Настоящее время керамика на основе карбида кремния првлееняетет з з з з з з з и з з и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и и иAL оров, сесителей, пошипников и гил д д иков, двигателей, металопроводов дя жидих металов. Разработаны новые композиционные материалы с карбидокремниевой матрицей. Они используются в различных областях, например в самолетостроении и в космонавтике.

2345_image_file_copy_5 SiC-foringer (1)_副本


Innleggstid: 22. august 2018
WhatsApp nettprat!