Керамика на основе SiC – Техническая керамика

Карбид кремния (карборунд) SiC является единственным соединением кремния и углерода. В природе этот материјал встречается крайне редко. Карбид кремния существует в двух модификациях, из которых ?-модификация является политипной и представляет собой сложную структуру гексагональной формы. Установлено около 20 структур, относящихся к гексагональной форме карборунда. Переход ?-SiC>?-SiC происходит примерно при 2100°С. При температура 2400°С это превращение происходит весьма быстро. До температур 1950-2000°С образуется кубическая модификация, при более высокой температура образуются гексагональные модификации. При температурах свыше 2600-2700°С карбид кремния возгоняется. Кристаллы карбида кремния могут быть бесцветными, зелеными и черными. Чистый карбид кремния стехиометрического состава бесцветен. При превышении содержания кремния SiC становится зеленым, углерода – черным.

Карборунд имеет очень высокую твердость: մինչև 45ГПа, достаточно высокую изгибную прочность: Карбидокремниевая керамика сохраняет примерно постоянную прочность до высоких температур. В то же время для самосвязанного SiC наблюдается падение прочности при высоких ջերմաստիճանх. При комнатной температуре разрушение самосвязанного SiC транскристаллитное и носит характер скола. При 1050°С характер разрушения становится межкристаллитным. Наблюдающееся при высоких температурах снижение прочности самосвязанного SiC вызвано его окислением. Prochity rekristallizovannogo SiC с увеличением температуры не уменьшается и, более того, հնարավոր է էе увеличение, связанное с образованием слоя аморфного SiO2, որը թույլ է տալիս թույլ տալ, որ սխալը կատարվի յուրահատկությամբ:
Карборунд устойчив против воздействия всех кислот, за исключением фосфорной и смеси азотной и плавиковой. К действию щелочей SiC менее устойчив. Установлено, что карбид кремния смачивается металлами группы железа и марганцем. Самосвязанный карбид кремния, который содержит свободный кремний, хорошо взаимодействует со сталью.

При изготовлении абразивных и огнеупорных изделий из SiC, а также карбидокремниевых электронагревателей, исходными материјалами служат кремнезем (кварцевый песок) и кокс. Их нагревают до высокой температуры в электрических печах, осуществляя синтез методом Ачесона:

SiO2+3C=SiC+2CO2 (24)

Вокруг нагревательного элемента (керна) получается зона синтезированного продукта, а за ней – зоны кристаллов низкой чистоты и непрореагировавших компонентов. Полученные в печи продукты разделяют по этим зонам, измельчают, обрабатывают и получают порошок карбида кремния общего назначения. Недостатком данных порошков карбида кремния являются высокая загрязненность примесями, большое содержание диоксида кремния, плохая спекаемость и др.

Для получения высококачественной конструкционной керамики необходимо использовать высокочистые, гомогенные, высокодисперсные порошки SiC, которые получают различными высокотехнологичными спо. При получении порошков методом синтеза исходный металлургический кремний подвергают дроблению и помолу в валковой мельнице. Измельченный порошок кремния отмывают от примесей в смеси неорганических кислот и направляют на тонкое измельчение в специјалной вертикальный ռեակտոր. Синтез SiC осуществляется в реакторе подачей Si в специјальные сопла, а вместо сжатого воздуха подается пропан:

t>1100°С

3Si+C3H8=3SiC+4H2 (25)

В результате получается высокодисперсный, гомогенный, активированный порошок карбида кремния монофракционного состава, имеющий высокую աստիճանь чистоты.

Изделия из SiC формуют прессованием, экструзией, литьем под давлением.

В технологии карбидокремниевой керамики обычно используют горячее пресование, реакционное и активированное спекание.

Метод горячего прессования позволяет получать материалы с плотностью близкой к теоретической и с высокими механическими свойствами. Прессование проводят обычно в прессформах из графита или нитрида бора при давлениях 10-50МПа и температурах 1700-2000°С. Высокая стабильность кристаллических решеток тугоплавких неметаллических соединений, связанная с наличием жестких направленных ковалентных связей, определяет низкую концентрацию выше. Это затрудняет протекание процесса диффузионно-вязкого течения, ответственного за массоперенос и уплотнение при твердофазном спекании. Учитывая это, перед пресованием в керамику вводят активирующие спекание добавки или проводят физическое активирование (используют ультрадисперсные порошки, обрабатывают их взрывом увелият увелият ные слои и т.д.):

Метод горячего прессования позволяет получать только изделия довольно простой формы и относительно небольших размеров. Получать изделия сложной формы с высокой плотностью можно методом горячего изостатического прессования. Материалы, полученные методами обычного и изостатического горячего прессования, близки по своим свойствам։

Путем проведения горячего изостатического прессования при высоких давлениях газовой среды (1000МПа), х пластическая деформация.

Используя метода активная спекания удается спечь отформованные изделия из SiC до плотности свыше 90% առանց կիրառման տվյալների: Так получают материјалы на основе SiC с добавками бора, углерода и алюминия. Благодаря этим добавкам за счет образования диффузионного слоя на поверхности частиц, их консолидации и укрупнения при зернограничной диффузии происходит увеличение площади межчастичных контактов исадка.

Для получения изделий из карбида кремния также широко используется метод реакционного спекания, который позволяет проводить процесс при болееких температурах и получать изделия сложной формы. Для получения так называемого «самосвязанного» карбида кремния проводят спекание прессовок из SiC и углерода в присутствии кремния. При этом происходит образование вторичного SiC и перекристализация SiC через кремниевый расплав. В итоге образуются беспористые материјали, содержащие 5-15% свободного кремния в карбидокремниевой матрице. Методом реакционного спекания получают также керамику из SiC, сформованную литьем под давлением. При этом шихту на основе кремния и других веществ смешивают с расплавленным легкоплавким органическим связующим ( парафином ) до получения шликерной массы, из которой затем отливамят под давкулем. Затем изделие помещают в науглероживающую среду, в которой сначала производство отгонку легкоплавкого связующего, а затем сквозное насыщение заготовки углеродом при температура 110. В результате реакционного спекания образуются частицы карбида кремния, которые постепенно заполняют исходные поры.

Ջերմաստիճանը 1300°C է: Реакционное спекание является экономичным процессом благодаря применению недорогого термического оборудования, температура спекания снижается с обычно применяемой 1600-2000°C մինչեւ 1100-1300°C:

Метод реакционного спекания используется в производстве нагревательных элементов из карбида кремния. Электронагревательные сопротивления из карбида кремния представляют собой так называемые термисторы, т. է. материалы, меняющие свое сопротивление под влиянием нагрева или охлаждения. Черный карбид кремния имеет высокое сопротивление при комнатной температуре и отрицательный температурный коэффициент сопротивления. Зеленый карбид кремния имеет низкое начальное сопротивление и слабоотрицательный температурный коэффициент, переходящий в положительный при ջերմաստիճանх 500-800°С. Карбидокремниевые нагревательные элёменты (КНЭ) обычно представляют собой стержень или трубку, имеющую среднюю рабочую часть с относительно высоким электрическим сопротивлением («горя») է ցածր электросопротивлением, որը չի տապալված գործընթացում эксплуатации печи. Նմանատիպ կոնտակտներ անհասանելի են հուսալի կապի համար, որը վերաբերում է սնուցող էլեկտրասարքերին, ինչպես նաև այն նախապաշարմունքների համար, որոնք փչացնում են ստենոկը, ինչը թույլ է տալիս սնուցել տարրերը:

Промышленность выпускает два типа нагревательных элементов из карбида кремния стержни с утолщенными выводными концами (манжетами) – силитовые нагреватели. Составные карборундовые нагреватели формуют из полусухой массы, состоящей из крупнозернистого порошка зеленого SiC с добавками сажи (1,5%) և жидкого стекла. Изделия формуют в картонных чехлах способом порционного трамбования на станках. После отверждения заготовки при 70-80°С картонный чехол выжигается в трубчатой ​​электропечи при 800-850°С ջերմաստիճան: Силитовые нагреватели формуют экструзией на горизонтальном гидравлическом прессе. Massa բաղկացած է смеси мелкозернистого SiC, сажи (20%) և фенолформальдегидной смолы. Формуются раздельно рабочая часть и манжеты. Состав манжетной части рассчитан на большую проводимость и в него входит около 40%Si. Օպերատիվ շտկումներ: На отвержденные стержни насаживают манжетные трубки. Трамбованные заготовки обжигают в засыпке из углепесочной смеси при температура около 2000°С. Нагреватель предварительно обмазывают токопроводящей пастой, состоящей из кокса, графита и кварцевого песка. Արտադրվում է սպեկտրային էներգիայով սնուցող տեխնոլոգիայով 40-50 мин.

При спекании силитовых нагревателей имеющиеся в массе углерод и ний превращаются во «вторичный» SiC по механизму реакционного спекания в условиях выделения парообразного кремния из засыгащаются, куда помещаются. В качестве засыпки используют смесь из молотого песка, нефтяного кокса и карбида кремния. Эта смесь при температура 1800-2000°С выделяет парообразный кремний и СО, проникающие внутрь заготовки и реагирующие с твердыми Si и С. Одновременно происходит синтез вторичного карбида кремния путем взаимодействия кремния, содержащегося в шихте, с углеродом.

Следует отметить, что реакционное спекание впервые нашло свое практическое применение именно в производстве нагревателей и изделий из карбида кремния.

Для получения плотной керамики из SiC высокой чистоты несеользуют также метод осаждения из газовой фазы, но из-за технологических трудностей и невозможности получать изделия толщиной болех залее несколь итн. покрытий. Для этого применяются методы газофазного синтеза SiC из летучих галогенидов кремния и углеводородов или մեթոդ термической диссоциации газообразных кремнийорганических соединений. Для восстановления Si из галогенидов необходимо участие в пиролизе газообразного водорода. В качестве углеродсодержащих соединений применяют толуол, бензол, гексан, метан и др. Для промышленного получения карбидокремниевых покрытий более удобен метод термической диссоциации метилхлорсиланов, имеющих стехиометрическое соотношение Si:C=1:1. Пиролиз СН3SiСl3 в водороде приводит к образованию осадка SiC, ձևերрующего покрытие при температурах մինչև 1400°С։

Очень важную роль при образовании пиролитического SiC играет водород. При диссоциации трихлорметилсилана в инертной атмосфере без участия водорода протекают реакции, приводящие к образованию кремния и углерода, а не SiC. Поэтому замена инертного газа-носителя на водород при термическом разложении метилхлорсиланов значајно повышает выход SiC и снижает или полностью прекращает сажеобразование. Процесс взаимодействия трихлорметилсилана с водородом протекает в две стадии. На первоначальной стадии процесса устанавливается нестабильное равновесие, при котором в качестве конденсированной фазы выступают кремний и углерод, а не карбид кремния. Երկրորդ մարզադաշտերում газообразные хлорсиланы и углеводороды, образования на первой стадии в концентрациях, отвечающих метастабильному равновесию, ռեագիրյուտ այլ ուրիշների հետ կրթությանմ SiC: Регулируя параметри протекания процесса осаждения, հնարավոր է варьировать свойствами полученных покрытий. Так, при низких температурах образуются мелкозернистые и метастабильные структуры. С повышением температуры размер кристаллов աճում. При 1400°С и ниских скоростях осаждения образуются монокристаллы и эпитаксиальные слои SiC. Средний размер кристаллов в слое SiC, осажденном из трихлорметилсилана при 1400°С, равен 1мкм, а при 1800°С – 15мкм։

При 1100-1200°С կարող է образовываться неравновесный твердый раствор сверхстехиометрическим содержанием атомов углерода, замещающих атомы кремния, что сказывается на умен. С повышением температуры отжига до 1300°С или результате последующего отжига избыточный углерод выделяется в свободном состоянии. При повышенных температурах осаждения и низких давлениях газовой среды наблюдается ориентированный рост кристаллов и формирование столбчатой ​​структуры. Пиролитические покрытия почти полностью состоят из ?-SiC. Доля гексагональных политипов կազմում է 5%: Скорость роста пиролитического карбида кремния не превышает 0,5мм/ч. Во то же время сравнительно ниские температуры осаждения (1100-1550°С) позволяют совмещать карбидокремниевые покрытия с любыми конструкционными материјали.

Основным недостатком этих покрытий является возникновение остаточных напряжений, вызванное несоответствием температурных коэффициентов линейного расширения покрытия икрыя икры) покрытия икрый икры (Кроме случаия нанесе). Из-за сравнительно низкой температуры осаждения напряжения не релаксируются и покрытия растрескиваются. Одним из способов устранения этого недостатка является получение слоистых покрытий, т.е. покрытий с регулярным чередованием слоев равной толщины пироуглерода и SiC, осажденным из смеси хлорметилсилана с метаном.

Кроме описанных способов получения технической керамики из SiC, используются и другие. Методом испарения SiC и его последующей сублимации при 2100-2300°С без использования связок и активирующих добавок получают так называемый рекристаллизационный карбид кремния.

Материалы на основе карбида кремния начали применяться значительно раньше, чем материјали на основе Si3N4, АlN, В4С и ВН. Уже в 20-е годы использовались карбидокремниевые огнеупоры на связке из диоксида кремния (90%SiC+10%SiO2), а в 50-е годы из карбида кремния на нитридокремниевой связке (74%S) В настоящее время керамика на основе карбида кремния применяется для изготовления уплотнительных колец для насосов, компрессоров, смесителей, подшипников и гильз для валов, дозирюльный армагуей и зивных сред, деталей двигателей, металлопроводов для жидких металлов. Разработаны новые композиционные материјали с карбидокремниевой матрицей. Они используются в различных областях, на пример в самолетостроении и в космонавтике.

2345_image_file_copy_5 SiC միջնապատեր (1) _副本


Հրապարակման ժամանակը՝ օգոստոսի 22-2018
WhatsApp առցանց զրույց!